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Abstract
Period-3 oscillations of pendulum are investigated using the method developed
in our previous paper [1]. Values of the driving force within very narrow
ranges may give rise to this kind of motion. Because of the extreme sensitivity
of the equation to the force strength and initial conditions, some features of the
system can hardly be depicted, either numerically or experimentally. However,
by analytically obtaining a map of states it is possible to detect the underlying
structure of the system of solutions. The theory predicts the existence of
unstable periodic solutions. Also, it predicts stable period-3 solutions around
the top position of pendulum. Trajectories obtained by numerically integrating
the pendulum equation in a phase-locked condition agree with our diagrams.

PACS numbers: 05.45.−a, 45.50.−j

1. Introduction

The motion of a harmonically driven, linear damped pendulum in a gravitational field obeys
the differential equation

θ̈ + σ θ̇ + (ω0)
2 sin θ = A sin ωdτ (1.1)

where θ is the angular displacement from the vertical resting axis at time τ , ω0 is the undamped
natural frequency for small-amplitude oscillations, ωd is the frequency of the external driving,
and σ and A are the damping constant and the amplitude of the driving, respectively, in
appropriate units. The dot means derivation with respect to τ . In dimensionless form, this
equation can be rewritten as

f 2θ̈ + εf θ̇ + sin θ = a sin t (1.2)
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where f ≡ ωd/ω0, ε ≡ σ/ω0, a ≡ A/(w0)
2 and t ≡ ωdτ . The dot now means derivation

with respect to t.
A harmonically driven pendulum can exhibit periodic motion. Phase-locking occurs when

the oscillation frequency of the motion is a rational multiple of the frequency ωd of the driving
torque. In these cases drive and damping exactly balance in one cycle.

If the amplitude a of the driving term is small, we expect, on physical grounds, mode-
locked orbits where the pendulum oscillates at the frequency of the driving force. These orbits
are period-1 limit cycles in the phase space. However, if the amplitude of the drive is increased,
we can expect to see limit cycles with periods other than 1 due to the nonlinear nature of the
system. The system behaviour is usually examined by drawing the phase diagrams obtained
by numerical integration of equation (1.2).

In the paper [1] an analytical procedure is developed for determining phase diagrams for
a pendulum described by (1.2). The results for period-1 solution were successfully compared
to those obtained by numerically integrating such an equation.

Here, we deal with the period-3 solution. This behaviour has been found in experimental
works with mechanical pendulums [2] and analogue electronic circuits [3], and in computer
simulations [4–6].

The results discussed here are all for the case f = 0.689 and ε = 0.2 for the simple
reason that Rasband [7] found, numerically, a period-3 motion using these values.

The main ideas of the theory are exposed in our previous paper. Hereafter we call it
paper I. The derivation of the formulae is not reproduced here. Also, the notation used here
for the variables is basically the same as introduced in paper I.

The main formulae are written in a slightly different form in section 2. In section 3,
an iterative method is established in order to solve the equations for period-3 motions. The
numerical solutions are examined graphically in the phase space. In sections 4 and 5 we
discuss our findings.

2. Period-3 solutions

Periodic solutions of (1.2) are represented by a Fourier series in the form

θ = �0 +
∞∑

m=1

Cm sin

(
m

p
t − δm

)
(2.1)

where p is an integer number with the meaning of oscillation period relative to driving period.
For oscillation period equal to three times the driving period, p is 3. �0 is the average
position and Cm and δm are constants representing, respectively, the amplitude and phase of
the harmonic oscillation with frequency m/p.

The value of θ is not necessarily in the interval (−π, +π). Here θ is considered as the
gyration angle in a vertical plane starting from the pendulum equilibrium position rather than
the oscillation angle. Thus, if θ increases from 0 to 7 and then keeps oscillating in the interval
(−7, 7), this means that the pendulum rotates once in one direction before stopping, and then
the motion is reversed and the pendulum rotates twice between two successive reversions.

By introducing

t1 ≡ 3δ1 and βm ≡ mδ1 − δm m � 1

in (2.1), we get

θ = �0 +
∞∑

m=1

Cm sin
(m

3
(t − t1) + βm

)
. (2.2)
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It is clear in this equation that the main features of the motion do not effectively depend
on the values of all parameters δm; t1 ≡ 3δ1 just represents a time shift. βm is the phase shift
of each harmonic and it is relevant for the description of the behaviour of the pendulum. We
recall that β1 = 0.

The system of equations to determine Cm and δm (or βm) is obtained by using∑

mδm =

∑

m(δm − mδ1) +

∑

mmδ1 = −

∑

mβm + sδ1 = −

∑

mβm + βs + δs

in equations (2.4), (2.9) and (2.11) of paper I.

Nonoscillatory term (s = 0)

sin �0

∑

t = even

0
J
1(C1)J
2(C2) · · · cos

( ∞∑
m=1


mβm

)

+ cos �0

∑

t =odd

0
J
1(C1)J
2(C2) · · · sin

( ∞∑
m=1


mβm

)
= 0. (2.3)

Harmonic 3

(−f 2 + iεf )C3 + 2 cos�0j3(C)J1(C3) = a eiδ3 + d3(C, β) e−iβ3 . (2.4)

j3(C) is the product of all 0-order Bessel functions but J0(C3):

j3(C) ≡ J0(C1)J0(C2)J0(C4) · · · J0(Cm) · · · (2.5)

and

−d3(C, β) ≡ 2i sin �0

∑

t= even

3
J 
t e+i

∑

mβm

+ 2 cos�0


 ∑


t =odd

3
J 
t e+i

∑

mβm − j3(C)J1(C3) eiβ3


 (2.6)

C ≡ {C1, C2, C3, . . .} and β ≡ {β1, β2, β3, . . .}.

Harmonic s �= 0 and 3(
−

(
f s

3

)2

+ iε
f s

3

)
Cs + 2 cos �0js(C)J1(Cs) = ds(C, β) e−iβs (2.7)

with

−ds(C, β) ≡ 2i sin �0

∑

t= even

s

J 
t e+i
∑


mβm

+ 2 cos�0


 ∑


t =odd

s

J 
t e+i
∑


mβm − js(C)J1(Cs) e+ iβs


 . (2.8)

Here,


t ≡
∞∑

m=1


m J 
t ≡ J
1(C1)J
2(C2) · · ·
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and ∑

t= even

s

is the sum over all possible values of {
1, 
2, . . .} that satisfy 
1 + 2
2 + 3
3 + · · · = s and

t = even number.

2.1. Assumptions

C3 is the amplitude of oscillation with the frequency of the driving force. We consider here
stationary solutions with frequency of oscillation equal to one-third of the frequency of the
driving force; C1 is the amplitude of the fundamental oscillation. Therefore, we assume that
these two coefficients are hierarchically more relevant than the others.

Moreover, as we search for convergent Fourier series, we assume that Cj is negligible for
j > M . If Cj = 0, then J
j

(Cj ) = 0 unless 
j = 0. J0(0) = 1.
It is a well known property of Bessel functions that limk→∞ Jk(Cj ) = 0. We assume that

J
j
(Cj ) is negligible for |
j | > 
jmax.

Thus, we take |
j | = 0 for j > M and |
j | � 
jmax for j � M .
We found that for M = 13 the agreement between the analytical and the numerical orbits

in the phase diagram is almost perfect. The neglected coefficients are found to be smaller than
1% of C1 or C3 in all cases. In some cases they were much smaller.

We can describe the main dynamic features with fewer coefficients but we need very high
accuracy in order to compare with the results of direct numerical integration of (1.2), as the
equation may be very unstable.

2.2. Symmetric solutions

We call it symmetric if, in the second half period (of motion, not of the driving force), the
pendulum is in the opposite position compared to the first half period, with respect to the
average position θ = �0, and moving in the opposite direction:

θ(t + 3π) = −θ(t) and θ̇ (t + 3π) = −θ̇ (t).

Therefore, if the solution is symmetric, all even order coefficients in the expression (2.2)
are null.

If C2 = C4 = · · · = 0, only terms 
2 = 
4 = · · · = 0 are relevant. As

s ≡
∑

m
m = 
t + (
2 + 3
4 + 5
6 + · · ·) + (2
3 + 4
5 + 6
7 + · · ·)
parity of s = parity of 
t + parity of

∑

2j = parity of 
t .

In (2.3) 
t must be an even number and therefore

�0 = 0 or �0 = π. (2.9)

For s = even number (s = 2j), (2.7) is reduced to(
−

(
f 2j

3

)2

+ iε
f 2j

3

)
C2j = 0 (2.10)

with trivial solution C2j = 0.
We assume, a priori, that C2j is small and establish an iteration procedure starting with

C2j = 0. This method automatically yields symmetric solutions. We could possibly start with
small but nonzero values of C2j and see what we get. Fourier expansion of solutions obtained
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by numerical integration of (1.2) was, most often, found with very small even order terms. As
the numerical calculation is quite time consuming, we opted for addressing only this class of
solutions.

3. Iteration method ( p = 3 solutions)

Equation (2.4) is the only equation that explicitly contains a and δ3. If instead of fixing a
as a parameter, we choose some other variable, the system of equations becomes much more
tractable, as (2.4) can be used to express a and δ3 in terms of Cj and βj . We choose to fix C3

as a parameter.
Oscillations with average position �0 = 0 are thoroughly investigated here.

3.1. First order approximation

As a first order approximation, we consider

Cj = 0 for j �= 1 and 3. (3.1)

3.1.1. C1 and β3. Equation (2.7) for s = 1 becomes

g(C1, β3) ≡
(

−
(

f

3

)2

+ iε
f

3

)
C1 + 2 cos �0

∑
J
1(C1)J
3(C3) e+i
3β3 = 0 (3.2)

where the
∑

is performed over all possible values of 
1 � 
1max and 
3 � 
3max that satisfy

1 + 
3 = odd and 
1 + 3
3 = 1. C3 is fixed as a parameter, as stated above.

This is a complex expression that can be written as two, real, implicit functions:

gR(C1, β3) ≡ Re(g(C1, β3)) = 0 and gI (C1, β3) ≡ Im(g(C1, β3)) = 0.

Here, Re and Im mean real and imaginary parts, respectively.
These functions are plotted in figure 1 for �0 = 0 for C3 < 3.5. Full lines represent

gR = 0, and gI = 0 is represented by broken lines. A continuous change of pattern occurs as
C3 is changed continuously.

For C1 < 8 there are basically six groups of solutions (β3, C1) which we call A, B, C, D,
E and F.

3.1.2. a and δ3. Equation (2.4) becomes(−f 2 + iεf
)
C3 + 2 cos �0

∑
J
1(C1)J
3(C3) e+i(
1β1+(
3−1)β3) = a eiδ3 (3.3)

where 
1 and 
3 satisfy 
1 + 
3 = odd and 
1 + 3
3 = 3. a is the absolute value of the left-hand
side of (3.3) and δ3 is the argument of the same expression.

Alternatively, the energy balance equation

aC3 sin δ3 = εf

∞∑
s=1

(
sCs

3

)2

(3.4)

derived in paper I can be used to determine δ3 in terms of a and other coefficients or, conversely,
to find a in terms of δ3 and the other parameters.

We call the values obtained for C1, β3, a and δ3 first order solutions.
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Figure 1. First order approximation. �0 = 0. For fixed C3, gR(C1, β3) = 0 is represented by
full lines and gI (C1, β3) = 0 is represented by broken lines. The values of C1 and β3 at the
intersections are the first order solutions.

3.1.3. {Cs, βs}; s � 5. C5 and β5 are determined by solving the equation(
−

(
5f

3

)2

+ iε
5f

3

)
C5 + 2 cos �0j5(C

0)J1(C5) = d5(C
0, β0) e−iβ3 (3.5)

where

C0 ≡ {C1, C3, . . . , C
0
j , . . .} and β0 ≡ {0, β3, . . . , β

0
j , . . .}

with C0
j = 0 and β0

j = 0 for j � 5.
Analogously, we find C7, C9, . . . by using already known values for C0 and β0.
Phase paths of periodic motions surround either the lowest position of the pendulum

(stable equilibrium point) or the top position (unstable equilibrium point).

3.2. Higher order approximation

Equation (2.7) is slightly modified to write for s �= 3(
−

(
f s

3

)2

+ iε
f s

3

)
Cs + 2 cos �0js(C

0)J1(Cs) = ds(C
0, β0) e−iβ3 (3.6)

where C0 and β0 are previously calculated values. As this is a complex function, it corresponds
to two real equations and therefore it is enough to find Cs and βs .
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Equation (2.4) in the form

(−f 2 + iεf )C3 + 2 cos �0j3(C
0)J1(C3) = a eiδ3 + d3(C

0, β0) e−iβ0
3 (3.7)

is used to find a and δ3.
Once δ3 and all coefficients Cs and βs are found, we obtain

t1 ≡ 3δ1 = β3 + δ3 and δs = βs + sδ1.

δ1 and all other δs are not uniquely defined (there must be three solutions) but the dynamic
features described are the same.

The same procedure is repeated until the solution converges.

4. Results of numerical calculations

The major difficulty of this problem is that numerical integration of (1.2) requires very high
accuracy; depending upon the values of the parameters, the equation may be unstable and then
the solution strongly depends upon the initial conditions. The built-in function ‘NDSolve’
of the program ‘MATHEMATICA’ was used for this purpose, with options ‘AccuracyGoal→
Infinity’ and ‘MaxSteps→ Infinity’. The integration was performed period by period in order
to get maximum accuracy. By following this procedure, we found consistent results.

Moreover, a difference in the value of the driving a of less than 0.01% may produce
completely different pictures. Therefore, analytically obtained Cj and a must be highly
accurate in order to write the initial conditions and the corresponding differential equation that
will be numerically integrated.

In the iteration method reported here, once C3 is fixed, the phase portrait does not depend
on the value of a as the equations for Cj and βj , j �= 3 do not contain a. a is related to the
portrait through (2.4).

We take up to seven odd order coefficients and


max ≡ {
1max, 
3max, . . . , 
13max} = {9, 7, 3, 1, 1, 1, 1}
for oscillations centred in the stable equilibrium position �0 = 0 and


max ≡ {
1max, 
3max, . . . , 
13max} = {7, 7, 3, 1, 1, 1, 1}
for oscillations around the potential maximum of the pendulum, at �0 = π .

It is not necessary to take as many coefficients in order to get a reasonable picture but we
need them to have reasonably accurate a. Iteration was performed until the values of C1 and
a converged to an accuracy of 10−6. In most cases, more than ten iterations were necessary.

Also, (3.3) was used to find δ3 and the energy balance equation (3.4) was used to determine
a. The results differed by less than 0.1%.

We systematically adopted the following procedure:

• An orbit was found using this theory.
• Numerical integration of (1.2) was performed using one point of the analytical solution

as initial conditions. The solutions were run through more than 180 periods of the driving
force before drawing phase portraits.

• An equation with a slightly different value of a was numerically integrated starting from
the same initial conditions.

• The same equation was integrated using different initial conditions in order to examine
the stability of the orbit.

• When some interesting solutions were found by numerical integration, these solutions
were Fourier decomposed, C3 was found and then the theory was applied in order to
compare the results.
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1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
0.4
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C
3

 numerical
 A
 B
 C
 D
 E

Figure 2. �0 = 0. All period-3 solutions found by the present method and by direct numerical
integration of the differential equation for f = 0.689 and ε = 0.2.

Motions centred in stable equilibrium position �0 = 0 were investigated with special
care.

4.1. Case: �0 = 0

We restricted the values of C3 and C1 to the ranges 1.2 � C3 � 3.6 and 0.2 � C1 � 8.
Figure 2 shows all period-3 solutions found by our method and by direct numerical

integration of the differential equation for f = 0.689 and ε = 0.2.

4.1.1. Group A. Possible solutions in first order approximation are shown in figure 1. Each
pair of values {C1, β3}, of the points A, B, C, D, E and F, corresponds to one orbit, due to
driving a.

The method converged for 1.8 � C3 � 2.6. Figure 2 shows the convergent values of a
and the results of numerical integration.

Period-3 orbits of type A were found numerically for 0.5153 � a � 0.521 955.
For values of a in this range, two attractors coexist: one with period 3 and another with

period 1. Trajectories converge towards one of these attractors, as observed by Heng et al [6].
In fact, all solutions were highly dependent upon initial values.

For a = 0.5232 the period has been clearly duplicated. For a = 0.525 more complicated
motion was obtained, seemingly chaotic; the trajectory remained well bounded in the phase
space.

Outside this range of a, for 0.525 < a < 0.6 and a < 0.5153, numerical integration
always converged asymptotically to period-1 orbits.

A typical phase portrait, as found by Rasband [7], is shown in figure 3.
In the phase diagrams, {θ(0), θ̇(0)} are the initial values used for numerical integration.

Full lines were obtained by numerical integration and the dots were obtained by using this
theory. Odd order Cj and δj are given.
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3 2 1 0 1 2 3

0

3

2

1

0

1

2

3

0

Figure 3. a = 0.518 57, �0 = 0, C = {1.240 78, 2.371 88, 0.427 24, 0.116 823, 0.027 744,
0.038 342, 0.004 487}, δ = {2.063 97, 2.342 48, −0.479 426, 0.658 386, 0.174 09, −1.959 54,
0.167 77}, {θ(0), θ̇(0)} = {−2.637 326 4,−0.954 636 4}.

15 10 5 0 5

0

3

2

1

0

1

2

3

0

Figure 4. a = 0.662 5386, �0 = 0, C = {3.762 21, 1.2, 0.281 255, 0.108 206, 0.045 335, 0.019 424,
0.008 593}, δ = {2.832 99, 2.527 79, 1.718 91, 1.209 19, 0.687 021, 0.186 016, −0.340 99},
{θ(0), θ̇ (0)} = {0, 0}.

4.1.2. Group B. The present method gave solutions for 1.2 � C3 � 2.2 (see figures 2, 4 and
5) but no orbit has been found by numerical integration. Numerical integration may converge
to a solution centred on a maximum of the potential �0 = π (figures 4, 5 and 15), indicating
that the latter solution is certainly more stable.

4.1.3. Group C. Figure 2 is zoomed and shown as figure 6. Two sets of solutions were found
by numerical integration:

• for 1.2533 � a � 1.255 with C3 � 1.82 (figure 7);

• for 1.214 87 � a � 1.243 with 2.5709 � C3 � 2.778 57 (figure 8).
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0

3
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1
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1

2

3

0

Figure 5. a = 0.662 5386, �0 = 0, C = {3.762 21, 1.2, 0.281 255, 0.108 206, 0.045 3349,
0.019 4243, 0.008 593}, δ = {2.832 99, 2.527 79, 1.718 91 1.209 19, 0.687 021, 0.186 016,
−0.340 99}, {θ(0), θ̇ (0)} = {−2.242 7189, −1.945 4008}.

1.8 2.0 2.2 2.4 2.6 2.8 3.0
1.20

1.22

1.24

1.26

1.28

1.30

a

C
3

 numerical
 C

Figure 6. �0 = 0. All solutions of type C found by the present method and by direct numerical
integration of the differential equation.

Three different initial conditions were taken in each case and the results were the same.
Apparently, the solution does not depend on the choice of initial conditions although this may
be difficult to check numerically.

For values of a between these two sets, multiple-period solutions were found (figure 9);
for values of a very near each of the period-3 attractors, a double period occurred. The method
is not accurate enough in order to investigate the period-doubling sequence. The motion is
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7.5 5 2.5 0 2.5 5 7.5

0

3
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1

0

1

2

3

0

Figure 7. a = 1.254 056 567, �0 = 0, C = {5.225 76, 1.83, 0.319 777, 0.262 712, 0.035 747,
0.005 615, 0.007 400}, δ = {2.056 48, 2.703 82, −2.580 06, −1.939 45, −1.3915, 2.971 85,
−2.552 01}, {θ(0), θ̇ (0)} = {−4.943 544, −3.170 4122}.

7.5 5 2.5 0 2.5 5 7.5

0

4

2

0

2

4

0

Figure 8. a = 1.221 602 08,�0 = 0, C = {5.308 087, 2.58, 0.097 838, 0.312 174, 0.023 146,

0.039 772, 0.017 273}, δ = {2.0294, 2.671 656,−2.488 3456, −2.070 46, −1.402 045, 2.791 96,

−3.016 801}, {θ(π/2), θ̇(π/2)} = {0, 0}.

bounded, independently of initial conditions and it looks as if the solution wanders between
the two stable attractors.

For a < 1.214 87 or a > 1.255 multiple-period solutions were found and as the value of a
departed from these values, the solution became complex (figures 10 and 11). The pendulum
motion seems to be a totally unpredictable sequence of oscillations and gyrations.

4.1.4. Group D. Only one period-3 solution was found by the present method and plotted
in figure 12. For some values of C3, the iteration method produced a sequence of oscillatory
values of the other coefficients that would not converge. No orbit has been found by
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4
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4

0

Figure 9. a = 1.252 312 334, �0 = 0, C = {5.238 07, 1.8, 0.333 002, 0.258 393, 0.035 615,
0.004 971, 0.007 388}, δ = {2.058 25, 2.700 95, −2.575 16, −1.940 66, −1.386 53, 2.962 36,
−2.533 44}, {θ(0), θ̇ (0)} = {−4.937 7366, −3.156 7687}.

7.5 5 2.5 0 2.5 5 7.5

0

4

2

0

2

4

0

Figure 10. a = 1.258 5829, �0 = 0, C = {5.527 41, 2.8, 0.069 445, 0.290 106, 0.000 285,
0.057 911, 0.021 754}, δ = {2.029 16, 2.663 92, −2.244 93, −2.084 72, −0.522 18, 2.746 61,
−3.062 85}, {θ(0), θ̇ (0)} = {−5.957 5974, −3.996 0918}.

numerical integration in these regions. As one solution has been found in this group, it is very
probable that very unstable orbits exist that were not detected by either analytical or numerical
methods.

For other values of C3, after a number of iterations, solutions ceased to exist. We believe
that these cases were incorrectly predicted by the first order approximation.

4.1.5. Group E. Only one period-3 solution was found by numerical integration, for a = 1.45
(figure 13). For other a the motion has been found to be unbounded (nonoscillatory).
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Figure 11. Numerical integration only. a = 1.26, {θ(0), θ̇ (0)} = {−5.957 5974, −3.996 0918}.
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Figure 12. a = 1.1736, �0 = 0, C = {5.614 74, 2.6, 0.290 28, 0.184 12, 0.084 9369,
0.034 9335, 0.030 2006}, δ = {2.433 74, 2.632 97, −2.918 57, −0.962 495, −0.668 341, −1.780 84,
−1.960 62}, {θ(0), θ̇ (0)} = {−4.586 8348, −3.795 5868}.

4.1.6. Group F. The iteration method did not converge. Also, no orbit has been found by
numerical integration.

4.2. �0 = π

A similar approach has been adopted to analyse motions centred on the top position of the
pendulum but we did not investigate thoroughly all the possibilities (figure 14). The iteration
method did not converge most of the time.
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Figure 13. a = 1.445, �0 = 0, C = {6.5487, 2.553 08, 0.253 432, 0.130 676, 0.103 256, 0.063 4082,
0.007 189 58}, δ = {2.043 12, 2.6856, −2.464 72, −1.9426, 2.098 81, 2.756 75, −3.033 97}.
Numerical integration has been performed for a = 1.45 in order to have the same value of
C3, {θ(π/2), θ̇ (π/2)} = {0, 0}.

Figure 14. Same as in figure 1 for �0 = π , first order approximation. Full lines represent
gR(C1, β3) = 0 and broken lines represent gI (C1, β3) = 0. C1 and β3 at the intersections are the
first order solutions.

The most typical solution is shown in figure 15. This is the case reported in [2]. The
solution is quite stable and apparently does not depend on initial conditions.
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Figure 15. a = 0.682 2569, �0 = π , C = {4.582 35, 1.8, 0.468 078, 0.186 778, 0.062 611,

0.010 667, 0.002 898}, δ = {1.063 58, 2.357 14, 0.906 639,−2.410 26, −1.170 66,−0.653 061,

0.747 89}, {θ(0), θ̇ (0)} = {−2.317 076, −0.262 10}.
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Figure 16. a = 1.345 29,�0 = π , C = {2.391 03, 3.26, 0.189 671, 0.293 506, 0.061 083,

0.033 2121, 0.028 5023}, δ = {1.1175, 2.761 09,−2.184 14, −3.093 98,−0.781 783, 1.912,

2.687 57}. Numerical integration has been performed for a = 1.3399 in order to have the same
value of C3, {θ(0), θ̇ (0)} = {−0.050 371 426, −3.565 5425}.

Figure 16 shows another solution. This is very unstable. Sometimes it was impossible to
reproduce a solution found a week before using the same computer.

5. Conclusions

By fixing the system parameters ε = 0.2 and f = 0.689, we found all period-3 attractors
for values of C3 and C1 in the ranges 1.2 � C3 � 3.6 and 0.2 � C1 � 8. These are rather
high amplitude motions and we expect them to be produced by large amplitude forces. We
found, in theory, five groups of period-3 solutions centred in the potential minimum (�0 = 0).
Numerical integration of the differential equation shows that most of them are quite unstable.
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Only two of them (A and C) are reasonably stable. Therefore, only forces a within very narrow
ranges produce stable p-3 motion: [0.5153, 0.521 955], [1.214 87, 1.243]and [1.2533, 1.255].

The method may fail to detect some nonstable orbits.
For oscillations around the top position �0 = π, a must be around 0.68.
When the system contains more than one periodic solution, the motion depends on the

initial conditions. This is very clear for values of a around 0.52, when period-1 and period-3
solutions coexist. For a around 1.254 only one period-3 solution is found and it is independent
of the initial conditions. Multiple period solutions arise for values of a outside these ranges;
as a departs from attracting periodic sets the motion becomes chaotic.

This method can be extended to investigate all mode-locked solutions. If the amplitude
of the driving term is small, then orbits with frequency equal to the driving frequency occur,
around the minimum potential (paper I). For ε = 0.2 and f = 0.689 period-1 orbits were
observed for values of a up to 0.6.

As the amplitude of the drive is increased, nonlinear effects become important and
period-1 orbits occur only for values of a in some narrow bands, as in period-3 cases. There
is no reason to expect different kinds of results for other periodic states.

Peterson and Davidson [4] summarized their numerical investigations in a state diagram
where regions of chaos, mode-locked states and complicated periodic states are mapped in
terms of the driving force amplitude and its frequency. This kind of map fails to show the
coexistence of many periodic states and the dependence upon the initial conditions. Some
solutions are missed as numerical integration always starts from {θ(0), θ̇ (0)} = {0, 0}.

We suggest a state diagram, in terms of the initial conditions and force strength, where
the dissipation parameter ε and the frequency f are kept fixed.

Appropriate initial conditions could be, for example, {θ(0), θ̇ (0)} = {0, v0}, as any motion
passes through the pendulum equilibrium position. This diagram would be a map in the space
v0 × a. It would be formed by a wide band of a, 0 < a � 0.6, which gives rise to period-1
motion, many narrow stripes and islands representing large amplitude periodic motions and
the respective basins of attraction. The bands can be determined by the method reported here,
without great difficulty, and the values of v0 by numerical integration.

This rather simple set-up allows direct visualization of the structure of the solutions and it
may help answer the question of whether it is possible to extend our findings to all diagrams:

• The motion is stable and independent of the initial conditions wherever there is only one
periodic solution.

• The period is doubled and transition to chaos may occur through a period-doubling
sequence as the value of a departs from the border of some mode-locked oscillation
region. Due to the extreme sensitivity of the motions to the values of a, sometimes it
is very difficult to distinguish the period-doubling sequence. If there is no attracting
set nearby, the solution may run to infinity, that is to say, the pendulum may rotate
indefinitely.

• If, for the same set of physical parameters, there is more than one stable periodic solution,
the motion is one of the solutions, depending on the initial conditions.

• A hybrid of two types of motion is observed near the borderlines of two neighbouring
attracting sets in the map.
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